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Abstract

We want to understand how the world behaves when you accelerate, in the

context of Special Relativity. We want to do something like the Lorentz Trans-

formation, except for acceleration and not velocity. In this article, we develop

equations for the velocity, acceleration and force of an object as they are measured

in an accelerated frame. Using these equations, it is then possible to completely

analyze cases such as the �twin paradox�. The ability to analyze such cases is

indispensable for Special Relativity research.
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1. Introduction and �rst example

We want to understand how the world behaves when you accelerate. We want to do

something like the Lorentz Transformation, except for acceleration and not velocity. The

Lorentz Transformation, in its simplest one-dimensional form, is a transformation between

an observer at rest, with zero velocity and zero acceleration, and an observer with a velocity

v along the x-axis. Both observers are at (position = 0, time = 0) according to both their

reference frames. Our transformation will be between an observer at rest, also with zero

velocity and zero acceleration, and an observer with acceleration ã on the x-axis. The �rst

observer will be an inertial observer, the second one will be a non-inertial observer. Our

accelerated observer will have zero velocity. And as in the Lorentz Transformation, in ours

too both observes will be at (pos = 0, time = 0) according to both their reference frames.

We will dub the inertial observer as O, and the accelerating one as O′.

Assumption 1: O and O′ will agree about the coordinates of all events taking place at

time = 0. That means that they will agree on the locations of all objects and the

time reading on all clocks in the system, at time = 0.

Note that this is an assumption that does not hold in the case of the Lorentz Transformation.

Before we start with the simplest example, I want to point out a di�erence between our

transformation and the Lorentz Transformation. The Lorentz Transformation is concerned

with space-time events, not with objects. Our transformation will deal with objects: How

their velocities, accelerations, masses etc. change when an observer is accelerating.

Let's start with the simplest example. There is an object, let's call it Obj. According to

O, the object is stationary at pos = d. It has zero velocity and zero acceleration at all times.

We want to know what O′ would think are the velocity and acceleration of Obj. (Note: we

already know that the position of Obj in the O′ frame is d, according to Assumption 1.)
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How do we �nd out what are the velocity and acceleration of Obj in the O′ reference

frame? This is the answer: We can know what is the position of Obj in the O′ frame at any

point in time, using the Lorentz Transformation and some other manipulations. We will

obtain the velocity and acceleration of Obj using the fundamental de�nitions: Velocity as

a derivative of position over observer time, and acceleration as derivative of velocity over

observer time.

Now our mission: To obtain an expression of the position of Obj in the O′ frame, as a

function of time in that frame.

To do this, we are going to look at things not from the O′ frame, but from the O frame,

at least at �rst. Assume some time t has passed in the O frame. What has happened with

O′? He is now at 1
2
ãt2, and his velocity is ãt. How much time passed in his frame? That

will be a harder calculation. Because O′ has been moving at some non-zero speed, his clock

has been running slower than the clock of O. How much slower? We will calculate.

This is the momentary ratio of time dilation of O′:√
1− (ãt)2

c2
(1)

So if we want to know what is the reading on the clock of O′ at time = t, we will use

this function:

exp(t) =

ˆ t

0

√
1− (ãt)2

c2
dt (2)

Which simpli�es to:

exp(t) =
ãt
√

1− ãt2

c2
+ c arcsin

(
ãt
c

)
2ã

(3)

Note: You may have noticed that the above formulas �break� when t grows too big. That

is correct. These formulas are only intended for small values of t. We are only interested in

small time values because our plan is to di�erentiate various expressions over time.
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Ok, now we know how much time passed in the O′ frame. Now we need to �nd out

the position of Obj in the O′ frame. For this, we are going to create two more reference

frames, that we will call T and T ′, since they are just temporary aids for our calculations.

Remember that now we are analyzing the system at time = t, as measured in the O frame.

The observer T is at rest according to O, and the observer T ′ is at rest according to O′. The

observers T and T ′ are both in the same position: Exactly where O′ is. To remind you, that

position is 1
2
ãt2. Both T and T ′ consider the time to be zero, while O considers the time to

be t. Do you see where this is going? This is our plan for getting the position of Obj in the

O′ system: We have the position of Obj in the O frame. A Galilean transformation will give

us the position in the T frame. A Lorentz transformation will give us the position in the

T ′ frame. A Galilean transformation will give us the position in the O′ frame. The position

in the O frame is d. Via Galilean, the position in T is d − 1
2
ãt2. Now to do a Lorentz

transformation to T ′. The velocity of T ′ is like that of O′: ãt. Therefore the position in

T ′ is
(
d− 1

2
ãt2
)√

1−
(
ãt
c

)2
. When we do a Galilean transformation to O′, the position

stays the same, only the time coordinate changes. Now we have it, the position and time

coordinates of Obj in the O′ system: (pos =
(
d− 1

2
ãt2
)√

1−
(
ãt
c

)2
, time = exp(t)).

Now remember what is the purpose of this: To get the velocity and acceleration of Obj

in time = 0. This is the expression for the position when time = exp(t):

pos(t) =

(
d− 1

2
ãt2
)√

1−
(
ãt

c

)2

(4)

We di�erentiate this function with respect to exp(t) to get a velocity function, which I

will not duplicate here since it is more cumbersome than illuminating. The important thing

is its value at t = 0:

vel(0) = 0 (5)
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This means that O′ agrees with O that the object has no velocity.

We obtain an acceleration function by di�erentiating again. This is its value at t = 0:

acc(0) = −ã
(

1 +
ãd

c2

)
(6)

This is the �rst interesting result. In a Newtonian world, the acceleration would be −ã,

but here there is a factor (1 + ãd
c2

). This is an important factor that will appear in almost

all of the expressions we will �nd.

Now I want to know what the mass m′ of Obj is in the O′ frame, given that it's rest

mass is m0. (In this example, the mass of Obj in the O frame, dubbed m, is identical to the

rest mass m0. In following examples this will not be the case.) The mass factor m′/m0 is

identical to the time dilation, and this is how we will measure it. The experiment begins at

time = 0. We let t time pass in the O system. The observer O′ experienced exp(t) time.

Using the Lorentz transformation, we will �nd out how much time passed in the clock on

Obj according to O′. We will divide exp(t) by that time. We will get an expression that

depends on t. We will take its limit as t→ 0. The result will be m′/m0.

We will use the "virtual" observers that we created before: T and T ′. But now the

Lorentz transformation will be a little more complicated. Obj is an object. Therefore,

Obj has a world-line, which is a set of space-time events. Since Obj is stationary in our

case, this would be a general space-time event in the world-line of Obj, as described by O:

(pos = d, time = τ). (We are using τ as our free variable since t is taken.) Now we will

transform this event into T with a Galilean transformation: (pos = d− 1
2
ãt2, time = τ − t).

Now Lorentz into T ′: (pos = γãt(d− 1
2
ãt2 − ãt(τ − t)), time = γãt(τ − t−

ãt(d− 1
2
ãt2)

c2
)). Now

Galilean into O′: (pos = γãt(d− 1
2
ãt2 − ãt(τ − t)), time = γãt(τ − t−

ãt(d− 1
2
ãt2)

c2
) + exp(t)).

Now we want the event for which time = exp(t) in the O′ frame. Therefore, we need to
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solve the following equation for τ :

γãt

(
τ − t−

ãt
(
d− 1

2
ãt2
)

c2

)
+ exp(t) = exp(t) (7)

This is a linear equation, and its solution is:

τ = t+
ãdt

c2
− ã2t3

2c2
(8)

So this is our τ . Since Obj is non-moving, τ is exactly the time that passed on Obj's

clock. Now we will divide the time experienced by O′ by the time experienced by Obj to

get the mass of Obj:

m′ = m0 lim
t→0

exp(t)

τ
= m0

(
1 +

ãd

c2

)−1

(9)

Again the same expression appears: The mass factor is (1 + ãd
c2

)−1. We have obtained

the mass.

2. An objectionable result

Think about that expression for the mass and how it behaves in di�erent circumstances.

When you accelerate towards an object, time on that object will run faster. The farther

away the object is, and the more you accelerate, the faster its �fast forward� will be. When

you are accelerating away from an object, there are two cases. If the object is su�ciently

close to you, time on it will run slower. The faster your acceleration is and the farther away

the object is, the slower his �slow motion� will become. But, if the object his su�ciently far

behind you, the factor (1 + ãd
c2

)−1 will become negative! What this means is that the mass

of the object will be negative and it will be going back in time.

This is a provocative and objectionable result. However, I do not see how it could be

denied. True, it sounds crazy; It is strongly opposed to intuition. But when dealing with
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Special Relativity, we should be skeptical about what our intuition tells us. For example,

according to Special Relativity, if I get up from my chair and run, the tree in the garden

will become heavier. So we shouldn't dismiss a result just because it sounds crazy.

What more objections are there to this result? It seems to contradict the second

law of Thermodynamics. For example, if the aforementioned object is a room in which a

person throws an egg on the �oor, then according to us the egg has reassembled itself and

jumped back into the person's hand. This seems to imply that the entropy in the room

had declined, which would be forbidden by the second law. However, the second law is a

�high-level� law. It is based on laws of mechanics which are on a low abstraction level.

The provocative result that we have obtained came directly from the level of mechanics.

Therefore, if there is a contradiction, it should appear on the level of mechanics as well.

I do not believe that the second law is wrong; I think that in order to apply it when

the observer is accelerating, it is necessary to generalize it. I have not given this matter

much thought, but I think that we can say that the second law applies only when the mass

is positive, and when the mass is negative a negative version of the second law is needed.

What more objections are there to our result? On �rst glance, it seems that it might

lead to paradox. If some things in our universe are going back in time, can we not obtain

information from their future and deliver it to their past? The answer is no. The equations

for this �reverse motion� behavior forbid us from doing that. Remember that an object will

be going back in time only if it's far enough behind you? The point is that it's always just

too far for you to �exploit� the reverse motion to create a paradox. After I will give you the

generalized equations, you are welcome to try and construct a paradox using these laws. It

will become clear that even though some objects are going backwards in time, there will be

no breaking of causality laws and no opportunity for �time travel�.
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3. An object moving at a constant velocity

Let's continue. We have solved the problem of a stationary object. Now we will solve

the problem of a constant-velocity moving object. We will call the velocity of the object v.

In this point I will have to introduce another complication. Up to this point we

assumed that the acceleration of O′ is constant. Indeed, in the results we have obtained so

far it does not matter whether the acceleration is constant or wildly �uctuating. However,

from now on it will sometimes matter. Therefore some of our results will depend not only

on the acceleration of O′, but also on the derivative of the acceleration. The derivative

of the acceleration, which is also the third derivative of the position, is called �jerk�. We

will refer to the jerk of O′ as ̃. Sometimes we will take the jerk into consideration, and

sometimes we won't, depending on whether it will matter in the �nal result.

A general space-time event on Obj's worldline will not be (pos = d, time = τ)

as it was before; It will now be (pos = d + vτ, time = τ). Galilean into T :

(pos = d + vτ − 1
2
ãt2 − 1

6
̃t3, time = τ − t) (notice how we took the jerk into account?).

Lorentz into T ′:

(pos = γ(ãt+ 1
2
̃t2)((d+ vτ − 1

2
ãt2 − 1

6
̃t3)− (ãt+

1

2
̃t2)(τ − t)),

time = γ(ãt+ 1
2
̃t2)((τ − t)−

ãt+ 1
2
̃t2

c2
(d+ vτ − 1

2
ãt2 − 1

6
̃t3))) (10)

Galilean into O′:

(pos = γ(ãt+ 1
2
̃t2)((d+ vτ − 1

2
ãt2 − 1

6
̃t3)− (ãt+

1

2
̃t2)(τ − t))

time = γ(ãt+ 1
2
̃t2)((τ − t)−

ãt+ 1
2
̃t2

c2
(d+ vτ − 1

2
ãt2 − 1

6
̃t3)) + exp(t)) (11)

This is the equation to be solved:

γãt

(
(τ − t)− ãt

c2

(
d+ vτ − 1

2
ãt2
))

+ exp(t) = exp(t) (12)
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This is the solution:

τ =
t · (−12c2 + (2ã+ ̃t) (−6d+ t2 (3ã+ ̃t)))

6 · (−2c2 + t · v · (2ã+ ̃t))
(13)

This is the position of the space-time event in the frame of O′, dependent on τ :

γ(ãt+ 1
2
̃t2)((d+ vτ − 1

2
ãt2 − 1

6
̃t3)− (ãt+

1

2
̃t2)(τ − t)) (14)

We enter the solution we found for τ and simplify to get the position function for Obj,

dependent on t. Don't try to make sense of it, it is not so interesting by itself:

pos(t) =
c2γ−1

(ãt+ 1
2
̃t2)

(−6d+ t · (3ãt+ ̃t2 − 6v))

3 · (−2c2 + t · v · (2ã+ ̃t))
(15)

We di�erentiate once and twice with respect to exp(t) in order to get the velocity and

acceleration functions. At time = 0, they are:

vel(0) → v

(
1 +

ãd

c2

)
(16)

acc(0) →
(

1 +
ãd

c2

)(
−ã+ 2ã · v

2

c2

)
+
̃d

c2
v (17)

So we have the velocity and the acceleration. The velocity expression is very

satisfactory, employing our favorite factor again. The acceleration is messier, though.

Notice that the jerk appears in it.

Now we will obtain the mass.

m′ = m0 lim
t→0

exp(t)

τγ−1
v

= m0γv

(
1 +

ãd

c2

)−1

= m

(
1 +

ãd

c2

)−1

(18)

This is very nice! The mass factor due to velocity, gamma, and the mass factor due

to acceleration, (1 + ãd
c2

)−1, are just multiplied together! It's a good thing that they are

combined in such a simple way.
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4. An object moving at a constant acceleration

Now it's time to take on an object going at a constant acceleration. We will dub the

object's acceleration a, and its starting velocity v. Now we will also need a function to tell

us the time that Obj experienced. This is it:

oexp(t) =

ˆ t

0

√
1−

(
at+ v

c2

)2

(19)

This is it with the integral solved:

oexp(t) =
c arcsin

(
at+v
c

)
+ (at+ v)γ−1

at+v − c arcsin
(
v
c

)
− vγ−1

v

2a
(20)

Let's do our drill. General space-time event in Obj's worldline in the O system: (pos =

1
2
aτ 2 + vτ + d, time = τ). Galilean to T : (pos = 1

2
aτ 2 + vτ + d− 1

2
ãt2− 1

6
̃t3, time = τ − t).

Lorentz to T ′:

(pos = γ(ãt+ 1
2
̃t2)((

1

2
aτ 2 + vτ + d− 1

2
ãt2 − 1

6
̃t3)− (ãt+

1

2
̃t2)(τ − t)),

time = γ(ãt+ 1
2
̃t2)((τ − t)−

ãt+ 1
2
̃t2

c2
(
1

2
aτ 2 + vτ + d− 1

2
ãt2 − 1

6
̃t3))) (21)

Galilean to O′:

(pos = γ(ãt+ 1
2
̃t2)((

1

2
aτ 2 + vτ + d− 1

2
ãt2 − 1

6
̃t3)− (ãt+

1

2
̃t2)(τ − t)),

time = γ(ãt+ 1
2
̃t2)((τ − t)−

ãt+ 1
2
̃t2

c2
(
1

2
aτ 2 + vτ + d− 1

2
ãt2 − 1

6
̃t3)) + exp(t)) (22)

This is the equation we need to solve for τ :

γ(ãt+ 1
2
̃t2)((τ − t)−

ãt+ 1
2
̃t2

c2
(
1

2
aτ 2 + vτ + d− 1

2
ãt2 − 1

6
̃t3)) + exp(t) = exp(t) (23)

Now we have a bigger challenge than in the previous examples. Now we have a

quadratic equation with two solutions to choose from. We will choose the following solution,
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for reasons too obscure to explain here. This is it:

τ =
−6c2 + 3vt(2ã+ ̃t) +

√
3

√
12c4 − 12c2t(2ã+ ̃t)(at+ v) + t2(2ã+ ̃t)

2
(a(−6d+ t2(3ã+ ̃t)) + 3v2)

−3at(2ã+ ̃t)
(24)

To obtain the position function pos(t), we will take the position coordinate from

equation 22, and substitute the preceding solution for τ . I will not list this function here

because it is very cumbersome.

We di�erentiate pos(t) once and twice with respect to exp(t) to get velocity and

acceleration:

vel(0)→ v

(
1 +

ãd

c2

)
We can see that the velocity did not change, thus it does not depend upon the

acceleration of the object.

Now the acceleration:

acc(0)→
(

1 +
ãd

c2

)[(
1 +

ãd

c2

)
a+ 2

v2

c2
ã− ã

]
+
̃d

c2
v (25)

The acceleration is an interesting new equation.

Let's get the mass. For that, we will use our newly-de�ned function oexp(t). This is

the mass:

m′ = m0 lim
t→0

exp(t)

oexp(t)
= m0γv

(
1 +

ãd

c2

)−1

= m

(
1 +

ãd

c2

)−1

(26)

We can see that the mass doesn't depend on the acceleration either.

Now we will do something that we haven't done in the previous problems. We will �nd

the transformation function for the force acting upon the object. Since the force is just the

derivative of the momentum, this should not be a problem. Now we will have to �gure out

the functions for the mass and momentum of the object.
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Now we need a function that will express the mass of the object in time = t. We will

obtain this by using the equation for mass that we just discovered. However, we will have

to apply a Lorentz Transformation on it for it to tell us the mass at arbitrary time t. The

mathematics is quite complicated, but this is the �nal result:

mass(t) = m0
1(

1 +
ãγ3
ãtpos(t)

c2

)√√√√1−

(
vel(t)(

1+
ãγ3
ãt
pos(t)

c2

) 1
c

)2
(27)

This is the momentum:

mom(t) = mass(t) vel(t) (28)

And at time = 0:

mom(0)→ m0γvv = mv (29)

We can see that the expression for the momentum does not depend even on the

acceleration of the observer! Hence when an observer accelerates, his opinion of objects'

momenta does not change.

Now this would be the force on Obj:

force(t) = lim
h→0

mom(t+ h)−mom(t)

exp(t+ h)− exp(t)
(30)

Which evaluates to:

force(0)→ m0γ
3
v

((
1 +

ãd

c2

)
a− γ−2

v ã

)
(31)

Notice something interesting: The jerk ̃ does not appear in the force expression. This

is surprising, because it appears in the expression for acceleration.
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5. Generalizing to three dimensions

So far we've been dealing with a one-dimensional world. Now we will generalize our

�ndings to a three-dimensional world.

General space-time event in the O frame:(
x =

1

2
axτ

2 + vxτ + dx, y =
1

2
ayτ

2 + vyτ + dy, z =
1

2
azτ

2 + vzτ + dz, time = τ

)
(32)

Galilean to T :(
x =

1

2
axτ

2 + vxτ + dx −
1

2
ãt2 − 1

6
̃t3, y =

1

2
ayτ

2 + vyτ + dy, z =
1

2
azτ

2 + vzτ + dz, time = (τ − t)
)

(33)

Lorentz to T ′:(
x = γ(ãt+ 1

2
̃t2)

((
1

2
axτ

2 + vxτ + dx −
1

2
ãt2 − 1

6
̃t3
)
− (ãt+

1

2
̃t2) (τ − t)

)
, y =

1

2
ayτ

2 + vyτ + dy,

z =
1

2
azτ

2 + vzτ + dz, time = γ(ãt+ 1
2
̃t2)

(
(τ − t)−

(ãt+ 1
2
̃t2)

c2

(
1

2
axτ

2 + vxτ + dx −
1

2
ãt2 − 1

6
̃t3
)))

(34)

Galilean to O′:(
x = γ(ãt+ 1

2
̃t2)

((
1

2
axτ

2 + vxτ + dx −
1

2
ãt2 − 1

6
̃t3
)
− (ãt+

1

2
̃t2) (τ − t)

)
, y =

1

2
ayτ

2 + vyτ + dy,

z =
1

2
azτ

2 + vzτ + dz,

time = γ(ãt+ 1
2
̃t2)

(
(τ − t)−

(ãt+ 1
2
̃t2)

c2

(
1

2
axτ

2 + vxτ + dx −
1

2
ãt2 − 1

6
̃t3
))

+ exp(t)

)
(35)

The equation to solve and the resulting τ are the same as those in the previous

example.

τ =
−6c2 + 3vt(2ã+ ̃t) +

√
3

√
12c4 − 12c2t(2ã+ ̃t)(at+ v) + t2(2ã+ ̃t)

2
(a(−6d+ t2(3ã+ ̃t)) + 3v2)

−3at(2ã+ ̃t)
(36)
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I will skip writing down the position functions. This is the velocity at time = 0:

velx(0) → vx

(
1 +

ãdx
c2

)
(37)

vely(0) → vy

(
1 +

ãdx
c2

)
(38)

velz(0) → vz

(
1 +

ãdx
c2

)
(39)

~vel(0) → ~v

(
1 +

ãdx
c2

)
(40)

This is the acceleration:

accx(0) →
(

1 +
ãdx
c2

)[
ax

(
1 +

ãdx
c2

)
+ ã

(
2
v2
x

c2

)
− ã
]

+
̃dx
c2
vx (41)

accy(0) →
(

1 +
ãdx
c2

)[
ay

(
1 +

ãdx
c2

)
+ ã

(
2
vxvy
c2

)]
+
̃dx
c2
vy (42)

accz(0) →
(

1 +
ãdx
c2

)[
az

(
1 +

ãdx
c2

)
+ ã

(
2
vxvz
c2

)]
+
̃dx
c2
vz (43)

~acc(0) →
(

1 +
ãdx
c2

)[
~a

(
1 +

ãdx
c2

)
+ ~v

(
2ã
vx
c2

)
− {ã, 0, 0}

]
+
̃dx
c2
~v (44)

Note that we need to de�ne a new oexp(t) function for this case. I will not provide the

details here.

Getting the mass:

m′ = m0 lim
t→0

exp(t)

oexp(t)
= m0γv

(
1 +

ãdx
c2

)−1

= m

(
1 +

ãdx
c2

)−1

(45)

A mass function for arbitrary time t:

mass(t) = m0
1(

1 +
ãγ3
ãtposx(t)

c2

)√√√√1−

(
| ~vel(t)|(

1+
ãγ3
ãt
posx(t)

c2

) 1
c

)2
(46)

De�ning momentum:

~mom(t) = mass(t) ~vel(t) (47)
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Momentum, again, is not a�ected by the observer's acceleration:

~mom(0)→ m0γ~v~v = m~v (48)

Di�erentiating momentum with respect to exp(t) to get the force:

forcex(0) → m0

[(
1 +

ãdx
c2

)(
~a · ~v
c2

γ3
~vvx + axγ~v

)
− ãγ~v

]
(49)

forcey(0) → m0

[(
1 +

ãdx
c2

)(
~a · ~v
c2

γ3
~vvy + ayγ~v

)]
(50)

forcez(0) → m0

[(
1 +

ãdx
c2

)(
~a · ~v
c2

γ3
~vvz + azγ~v

)]
(51)

~force(0) → m0

[(
1 +

ãdx
c2

)(
~a · ~v
c2

γ3
~v~v + γ~v~a

)
− {ã, 0, 0} γ~v

]
(52)

6. A �nal generalization

Now we will generalize the problem further. Until now we have dealt with a simple

�boost�: The case where the acceleration of the observer is only on one axis. Now we

will solve the problem where the observer accelerates in some arbitrary direction. This

acceleration would be dubbed ~̃a.

Solving this case doesn't require any more �ddling with the Lorentz Transformation:

We can just take the results from the �boost� case, and apply some linear algebra to

generalize them. The results are listed below.

I have included another entry for the force, expressing it with respect to ~F , the force

acting on Obj in the frame of the non-accelerating observer. I have also included a legend,

so this section may be used as reference.
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~vel(0) → ~v

(
1 +

~̃a · ~d
c2

)
(53)

~acc(0) →

(
1 +

~̃a · ~d
c2

)[
~a

(
1 +

~̃a · ~d
c2

)
+ ~v

(
2
~̃a · ~v
c2

)
− ~̃a

]
+
~̃ · ~d
c2

~v (54)

~mom(0) → m0γ~v~v = m~v (55)

mass(0) → m0γ~v

(
1 +

~̃a · ~d
c2

)−1

= m

(
1 +

~̃a · ~d
c2

)−1

(56)

~force(0) → m0

[(
1 +

~̃a · ~d
c2

)(
~a · ~v
c2

γ3
~v~v + γ~v~a

)
− ~̃aγ~v

]
(57)

~force(0) →

(
1 +

~̃a · ~d
c2

)
~F −m0γ~v~̃a (58)

Legend:

~̃a and ~̃: Respectively, the acceleration and jerk of the accelerating observer, as measured in

the frame of the non-accelerating observer.

m, ~d, ~v, ~a and ~F : Respectively, relativistic mass, position, velocity, acceleration and force of

the object in the non-accelerating frame.

γ~v: The gamma of ~v, that is,
(
1 + |~v|2

c2

)−0.5

.

m0: Rest mass of the object.

~vel(0), ~acc(0), ~mom(0), etc.: Properties of the object as measured in the accelerating frame.

This reference table is the �nal product of this article.

A. Support for Assumption 1

All the equations that we arrived at were dependent of the assumption that we made.

I reproduced it here:
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Assumption 1: O and O′ will agree about the coordinates of all events taking place at

time = 0. That means that they will agree on the locations of all objects and the

time reading on all clocks in the system.

What makes me think that this assumption is true?

It is hard to �nd discussion of this issue in the literature. In �Gravitation�, the GR

textbook by Thorne, Wheeler and Misner, there is a small section about analysis of an

accelerating frame with Special Relativity:

�An accelerated observer can carry clocks and measuring rods with him, and can use them to

set up a reference frame (coordinate system) in his neighborhood.

His clocks, if carefully chosen so their structures are a�ected negligibly by acceleration (e.g.,

atomic clocks), will tick at the same rate as unaccelerated clocks moving momentarily along

with him: [...] And his rods, if chosen to be su�ciently rigid, will measure the same length

as momentarily comoving, unaccelerated rods do.�

This statement is equivalent to our Assumption 1.

Why is this assumption true? Why does velocity in�uence the �perception� of an

observer, but acceleration doesn't? Why does an observer with velocity see rods shrinking

but an observer with acceleration doesn't? Some reasoning can be made about this.

Imagine we are viewing an object moving about in the universe. We are observers

analyzing it �from the outside� of it. If its velocity increases, its mass increases as well. But

whatever acceleration it has, it has no e�ect on its mass. And if that object was a living

observer, and we would ask him how the experience felt to him, �from the inside�? How

would he say that the world changed when he picked up speed or acceleration?
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I claim that there is a duality between his experiences from the inside and our

measurements from the outside:1

�From the outside� �From the inside�

Velocity change Mass of observer changed �I saw rods shrinking, clocks ticking slower.�

Acceleration change Mass of observer didn't change �No rods shrunk and clocks ticked the same.�

This is, therefore, the explanation I propose: Because the acceleration of an object has

no e�ect on its mass, the acceleration of an observer will not change his opinion of the

locations of space-time events happening in the present time.

1The rods and clocks referred to in this table are those that, in the case of the velocity-

changed observer, have the same location as the observer, and in the case of the acceleration-

changed observer, have the same location and velocity as the observer.
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